
Draft RFC (1 of 2)
Vector Looping 
Engine*
BASED ON THE LIBRESOC DEVELOPED SIMPLE-V SCALABLE VECTORS

* WORKING TITLE



Draft RFC (1 of 2)
Vector Looping Engine

The Basics
 As engineers we all understand the concept and use of 

compression/decompression to enhance data transfer.

 Simple-V employs compressed instructions that are optimally 
transferred into the decoder where they are decompressed 
maximising instruction issue (throughput).

 Compression reduces the number and volume of instructions
crossing the chip physical boundary which is a major use of power
and normally takes many magnitudes of additional clock cycles.



Draft RFC (1 of 2)
Vector Looping Engine

Simple-V is a looping mechanism similar in concept to Zilog Z80 LDIR and CPIR instructions, and 
8086 REP instruction. In its most basic form it enumerates through sequential registers and therefore 
gives the effect of a Vector ISA, but instead, like LDIR CPIR and REP, relies exclusively on Scalar 
operations and Scalar register files. 

Simple-V provides a number of key compounding performance optimisations: 

 It reduces code and ROM size saving cost 

 It reduces memory access and power consumption 

 The code for complex functions like cryptography can be entirely held in the L1 I-Cache and 
register files, greatly enhancing security 

 It simplifies mathematical algorithm design, simultaneously reducing coding costs and 
improving security auditability. 

 It does this at the same time as fulfilling its primary purpose, which is to maximise the saturation 
of the processor back end, whilst the decode engine can be idle, saving power. 

 Finally it is readily compliable with simple patches to existing compilers. Simple-V is extensive, 
being originally based on Cray Vectors.



Draft RFC (1 of 2)
Vector Looping Engine



Draft RFC (1 of 2)
Vector Looping Engine



Draft RFC (1 of 2)
Vector Looping Engine

 Predication. Every looped instruction (termed an “element” in standard Vector ISAs) is 
individually predictable. However unlike standard Vector ISAs, Simple-V has twin 
predication: both source and destination may have separate predicate masks. 

 Element-width Overrides. All standard Vector ISAs have operations at different bit-
widths (8-bit, 16-bit...). Simple-V achieves this by overriding the usual bit-width of the 
prefixed instruction, on both source and destination registers. 

 Saturation. Rather than add explicit “saturation” opcodes, Simple-V simply in a RISC-
uniform fashion allows all Arithmetic and Logical Operations to be signed or unsigned 
saturated. 

 Data-Dependent Fail-First. As the Looping is progressing, the result of the element is 
tested, and if the test fails the looping is terminated at that point. This is very useful for 
string copy (copying up to the NUL), linked-list walking (stopping at the end of the 
linked list) and other standard computer science algorithms including sorting 
algorithms. 



Draft RFC (1 of 2)
Vector Looping Engine

 Horizontal-First and Vertical-First. Horizontal Mode is the normal expected mode of 
operation of any standard Vector ISA: the elements are all processed (together) 
before the Program Counter moves to the next instruction. In Vertical-First Mode this 
is reversed. Instructions execute one element, and it is required to execute an explicit 
“stepping” instruction to move on to the next element. Explained in 
https://www.youtube.com/watch?v=fn2KJvWyBKg 

 Extensive Branch-Conditional capabilities. 3D GPUs and CUDA require predication 
testing to help skip over parallel operations that could be conditionally 100% masked 
out (parallel if/else). Simple-V combines Data-Dependent Fail-First and Branch-
Conditional CTR Mode into SV Branch-Conditional, to replace what would otherwise 
require 5 to 10 instructions to achieve.

 Sub-Vectors. For 3D GPU, Audio/Video and HPC work it is very common to work with 
2-vector (XY, LR Channel), 3-vector (XYZ, RGB), and 4-Vector (XYZW, ARGB). Simple-V 
therefore builds support for 2/3/4 sub-vectors into the Prefix as it is extremely 
commonly needed. 



Draft RFC (1 of 2)
Vector Looping Engine

 Pack and Unpack: Data Transpose. For Matrix and other 2/3/4 Vector operations 
it is extremely useful to be able to transpose the data in-place. Pack and Unpack 
allows for transposing of both the source operands and destination operands. 

 REMAP Subsystem. Reordering of the order of the elements is possible under 
hardware control. This allows for example Matrix Multiply to be executed in three 
instructions with arbitrary matrix dimensions, without needing to perform 
additional transpose operations as the transpose is taken care of by REMAP. 
Hardware modes include Matrix, DCT, FFT, Parallel-Reduction and Big-Integer. 
https://youtube.com/watch?v=NpmbUfgiuFE 



Draft RFC (1 of 2)
Vector Looping Engine

 Simple-V recognises that not everyone will want to implement the full capability. 
Therefore Compliancy Levels have been introduced, including Embedded Levels 
through to HPC / 3D. https://libre-soc.org/openpower/sv/compliancy_levels/ 

 SV’s upper Compliancy Levels extend the three register files (CR GPR and FPR) 
with up to QTY 128x64-bit GPR and FPR registers and QTY 128x4-bit CR Fields 
(available for use as Predicate Masks).

 SV’s Compliancy Levels are unrelated to Power ISA Compliancy Subsets

 A critically-important aspect of Simple-V is that the Scalar instruction is NOT 
modified in any way shape or form. sv.addi is simply a sequence of addi
instructions. However there are “qualifiers” such as Element-width overrides that 
reduce the bit-width of the operation down to 8/16/32 but this is the only 
seeming-modification of the Power ISA. RFC ls005.xlen covers the uniform 
changes required to the Scalar Power ISA.



Draft RFC (1 of 2)
Vector Looping Engine

 With modification of Scalar instructions being prohibited just by being Prefixed, the uniform RISC-like nature of Simple-V 
Prefixing extends into the compiler toolchain, drastically simplifying the addition of compiler support. 

 The full specification is at https://libre-soc.org/openpower/sv 

 Three ISA modifications are required

 Modification to the Compliance levels SFFS and SFS to move PREFIX instructions to their own compliance group

 Additional eight SPRs: SVSTATE, SVLR, SVSHAPE0, SVSHAPE1, SVSHAPE2, SVSHAPE3, 2 reserved

 Adoption of seven 32Bit management instructions

 setvl Sets the vector length

 svstep Stepping instruction used in vertical first mode 

 svremap Associates "schedules" with registers (GPR, FR, CR)

 svindex A general-purpose "remap" instruction (generalised xxperm)

 svshape (includes svshape2) Sets up commonly-used "schedules" such as DCT, FFT, Matrix, Parallel Reduction

 svshape3 Sets up commonly-used "schedules" such as DCT, FFT, Matrix, Parallel Reduction

 svshape4 Sets up commonly-used "schedules" such as DCT, FFT, Matrix, Parallel Reduction


