
EXTENDING POWER ISA FOR SEARCH WITH SVP64∗

Luke Kenneth Casson Leighton† ,
Toshaan Bharvani, Vantosh,

Konstantinos Margaritis, VectorCamp

Abstract
Under normal circumstances Search and AI algorithm

implementers are left with the unenviable task of optimising
code for hardware that they had no input into its design, and if
by chance the original designers of the hardware or crucially
the ISA happened to have tested a particular algorithm and
thought hard about it, software writers might end up with
optimal performance and power consumption. If however
they step outside of that box there is nothing that they can
do other than to search for alternative hardware on which
to optimally implement a Search algorithm, or to tolerate
the sub-par performance and power usage. Whilst SVP64
will ultimately likely suffer this same fate at some point,
the opportunity exists during this early phase its lifecycle to
look closely at Search and AI algorithms to see if there is
anything that can be done. Early exploration showed that
a paralleliseable Vector strncpy can be implemented in as
little as ten SVP64 Assembler instructions.

INTRODUCTION TO SVP64
The basic principle of SVP64 is to turn Vectorisation into

a type of Scalar Loop Construct. This is what SIMD and
normal Vector ISAs look like:

for i in range(SIMDlength):
VR(RT)[i] = VR(RA)[i] + VR(RB)[i]

This is what SVP64 looks like:

for i in range(VL):
GPR(RT+i) = GPR(RA+i) + GPR(RB+i)

Note immediately that as a direct consequence of defin-
ing VL directly in terms of Elements instead of the Vec-
tor Register bit-width, the known-issue of always having
to have a Vector Loop at all times in order to guarantee
Binary-executable Portability, SVP64 programmers may
write simple loops - including SIMD ones, freed from Power-
of-Two limitations - in just two lines of code1.

for i in range(VL):
if predicate.bit[i] clear: # skip?

continue
GPR(RT+i) = GPR(RA+i) + GPR(RB+i)
if CCTest(GPR(RT+i)) fails: # end?

VL = i # truncate the Vector
break

∗ NGI Search, EU Grant 101069364
† lkcl@lkcl.net
1 with the proviso that the Programmer must be mindful of both the starting

point and what they set MAXVL to. Hardware will helpfully remind them
of any Register File overruns by happily throwing an Illegal Instruction

On top of these very basic but already-profound2 begin-
nings, Predication and Conditional-Exit can be added. Pre-
dication is found in every GPU ISA, and Conditional-Exit
is a 50-year invention dating back to Zilog Z80 CPIR and
LDIR.

Additionally the concept may be introduced from ARM
SVE and RISC-V RVV ”Fault-First” on Load and Store,
where if an Exception would occur then the Hardware in-
forms the programmer that the Vector operation is truncated:

for i in range(VL):
if predicate.bit[i] clear:

continue
EffectiveAddress = GPR(RA+i) + Immediate
if Exception@(EffectiveAddress):

if i == 0: RAISE Exception
else: VL = i; break # truncate

GPR(RT+i) = Mem@(EffectiveAddress)

The important facet of both these ”Conditional Trunca-
tion” constructs is that there exists a Contract between Pro-
grammer and Hardware. The Programmer requests up to a
certain Vector Length, and the Hardware informs the Pro-
grammer exactly how much work was actually carried out.
The most important aspect is the hardware informing the
Programmer how far it got, in an implicit but 100% Determ-
inistic fashion, by truncating the Vector Length.

With these two complementary and inter-related con-
structs, all the usual hassle with SIMD - often compensated
for with hard-coded dedicated ”Memory copy” or ”String
copy” instructions that cannot be leveraged for any other
purpose, goes away.

STRNCPY
strncpy [2] presents some unique challenges for an ISA

and hardware, the primary being that in a SIMD (parallel)
context, strncpy operates in bytes where SIMD operates
in power-of-two multiples only. PackedSIMD is the worst
offender: PredicatedSIMD is marginally better3. If SIMD
Load and Store has to start on an Aligned Memory location,
which is a common limitation, things get even worse. The
operations that were supposed to speed up algorithms have
to have ”preamble” and ”postamble” to take care of the
corner-cases.

Worse, a naive SIMD ISA cannot have Conditional inter-
relationships. In well-defined ISAs, 128-byte or greater
2 caveats: with hardware and ISA Architectural requirements that deal with

the increased Dependency Hazard Management, too detailed to list in
full in this document, the most important being that the total number of
registers be a fixed and mandatory Standards-defined quantity

3 caveat: if designed properly, as was done successfully in ARM SVE

LOADs either succeed in full or they fail in full. If the
strncpy subroutine happens to copy from the last few bytes
in memory, SIMD LOADs are the worst thing to use. We
need a way to Conditionally terminate the LOAD and inform
the Programmer, and this is where (as in ARM SVE) Load-
Fault-First comes into play.

However even this is not enough: once LOADed it is ne-
cessary to first spot the NUL character, and once identified to
then begin copying NUL characters from that point onwards.

for (i = 0; i < n && src[i] != '\0'; i++)
dest[i] = src[i];

for (; i < n; i++)
dest[i] = '\0';

Leaving aside the prior issue that LOADing beyond the
point where the NUL was should not even have been at-
tempted in the first place, performing such a conditional
NUL-character search in a SIMD ISA is typically extremely
convoluted. A usual approach would be to perform a Par-
allel compare against NUL (easy enough) followed by an
instruction that then searches sequentially for the first fail,
followed by another instruction that explicitly truncates the
Vector Length, followed finally by the actual STORE.

mtspr 9, 3 # move r3 to CTR
addi 0,0,0 # initialise r0 to zero
chr-copy loop starts here:
for (i=0; i<n && src[i] != '\0'; i++)
dest[i] = src[i];
VL (and r1) = MIN(CTR,MAXVL=4)
setvl 1,0,MAXVL,0,1,1
load VL bytes (update r10 addr)
sv.lbzu/pi *16, 1(10)
compare against zero, truncate VL
sv.cmpi/ff=eq/vli *0,1,*16,0
store VL bytes (update r12 addr)
sv.stbu/pi *16, 1(12)
test CTR, stop if cmpi failed
sv.bc/all 0, *2, -0x1c
zeroing loop starts here:
for (; i < n; i++)
dest[i] = '\0';
VL (and r1) = MIN(CTR,MAXVL=4)
setvl 1,0,MAXVL,0,1,1
store VL zeros (update r12 addr)
sv.stbu/pi 0, 1(12)",
decrement CTR by VL, stop at zero
sv.bc 16, *0, -0xc

All of the sequential-search-and-truncate is part of the
Data-Dependent Fail-First Mode that is a first-order con-
struct in SVP64. When applied to the sv.cmpi instruction,
which produces a Vector of Condition Codes as opposed to
just one for the Scalar cmpi instruction), the search for the
NUL character truncates the Vector Length at the required
point, such that the next instruction (STORE) is already set
up to copy up to and including the NUL (if one was indeed
found).

The next most important addition to SVP64 is a Vector-
aware Branch-Conditional instruction. Where sv.cmpi had
created a Vector of Condition Codes, sv.bc/all will only
Branch back to continue loading/copying of bytes iff no
NUL was found and there are more characters to copy.

A normal ISA would not have such parallel Condition
Code Branch instructions. It would perhaps have a way to
reduce a batch of parallel Condition Codes down to a single
Condition Code, and then use a Scalar Branch-Conditional.
Additionally the opportunity is taken to reduce the CTR
Special Purpose Register by the (run-time truncated) Vector
Length, saving the Programmer from having to explicitly
copy the Vector Length into a GPR, explicitly subtract that
from a copy of CTR, then explicitly copy the subtraction
result back into CTR.

The end-result of these enhancements is an
overwhelmingly-compact general-purpose Vector ISA
that effectively did nothing more complex than bring
back 50-year-old concepts from 8-bit micro-processors.
With the high reduction in program size comes a high
”bang-per-buck” ratio that often allows the core inner
loop (in this case the entire strncpy subroutine) to fit into
a single L1 Cache Line, avoiding TLB misses and thus
significantly saving on power consumption as well as
potential operational delays.

CONCLUSION

Our goal as part of NGI Search is to validate that the ap-
proach taken above works across multiple algorithms. Vec-
torScan [1] was chosen as a high-value library due to the
sheer overwhelming complexity needed for other ISAs. libc6
was also chosen as it is such a low-level library that any
Search algorithm utilising it would benefit from increased
compactness and efficiency.

SVP64 chose very deliberately a design paradigm that
only general-purpose constructs be added. There are no
hard-coded dedicated specialist ”memory copy” instructions,
with the crucial side-effect that a strncpyW instruction (a
UCS-2 variant of strncpy) is simply a matter of using general-
purpose 16-bit cmp and 16-bit LOAD/STORE instead of
general-purpose 8-bit cmp and 8-bit LOAD/STORE.

Thus it is anticipated that future programmers may be
freed from many of the limitations inherent in other ISAs, by
being able to express high-level language constructs much
more directly, cleanly and clearly in SVP64 Assembler. All
whilst retaining an all-important general-purpose Sequential
Programming paradigm.

REFERENCES
[1] VectorScan,
https://github.com/VectorCamp/vectorscan

[2] https://git.libre-soc.org/?p=openpower-isa.
git;a=blob;f=src/openpower/decoder/isa/test_
caller_svp64_ldst.py;hb=HEAD

