RFC 1s002 Floating-Point Load-Immediate

URLs:

o https://libre-soc.org/openpower/sv/int_ fp mv/#fmvis
o https://libre-soc.org/openpower/sv/rfc/1s002/
o https://bugs.libre-soc.org/show_bug.cgi?id=944

Severity: Major

Status: New

Date: 03 Oct 2022

Target: v3.2

Source: v3.0B

Books and Section affected:

Book I Scalar Floating-Point 4.6.2.1
Appendix D Power ISA sorted by opcode
Appendix E Power ISA sorted by version
Appendix F Power ISA sorted by mnemonic

Summary

Instructions added

fmvis - Floating-Point Move Immediate, Single
fishmv - Floating-Point Immediate, Second-half Move
(Potentially 64-bit prefixed of the same)

Submitter: Luke Leighton (Libre-SOC)
Requester: Libre-SOC
Impact on processor:

Addition of two new FPR-based instructions
(potentially 3 if EXT001 Prefixed variants added)

Impact on software:

Requires support for new instructions in assembler, debuggers,
and related tools.

Keywords:
FPR, Floating-point, Load-immediate, BF16, FP32
Motivation

Similar to 1xvkq but extended to a full BF16 with one 32-bit instruction and a full FP32 in two 32-bit instructions these
instructions always save a Data Load and associated L1 and TLB lookup. Even clearing an FPR to zero presently requires Load.

Notes and Observations:

1. There is no need for an Re=1 variant because this is an immediate loading instruction (an FPR equivalent to 11i)

2. There is no need for Special Registers (FP Flags) because this is an immediate loading instruction. No FPR Load Operations
alter FPSCR, neither does 1xvkq, and on that basis neither should these instructions.

3. An EXTO001 Variant which also save similar Data-Load and Data-TLB lookups are mentioned for completeness but not
included as part of this RFC. Another Stakeholder with a vested interest in 64-bit Prefixed instructions may wish to
consider submitting them.

4. fishmv as a FRS-only Read-Modify-Write (instead of an unnecessary FRS,FRA pair) saves five potential bits, making the
difference between a 5-bit XO (VA/DX-Form) and requiring an entire Primary Opcode.

Changes

Add the following entries to the Appendices and instructions of Book I as a new Section 4.6.2.1

Appendices

Appendix D Power ISA sorted by opcode
Appendix E Power ISA sorted by version
Appendix F Power ISA sorted by mnemonic

Form DBook Page Version mnemonic Description

DX I # 3.0B fmvis Floating-point Move Immediate, Single
DX I # 3.0B fishmv Floating-point Immediate, Second-half Move

https://libre-soc.org/openpower/sv/int_fp_mv/#fmvis
https://libre-soc.org/openpower/sv/rfc/ls002/
https://bugs.libre-soc.org/show_bug.cgi?id=944

Floating-Point Move Immediate

fmvis FRS, D

0-5 6-10 11-15 16-25 26-30 31 Form
Major FRS dl do X0 d2 DX-Form

Pseudocode:

bf16 = d0 || d1 || d2 # create BF16 immediate
fp32 = bf16 || [0]*16 # convert BF16 to FP32
FRS = DOUBLE(fp32) # convert FP32 to FP64

Special registers altered:
None

Reinterprets D << 16 as a 32-bit float, which is then converted to a 64-bit float and written to FRS. This is equivalent to
reinterpreting D as a BF16 and converting to 64-bit float.

Examples:

fmvis f4, O # writes +0.0 to f4 (clears an FPR)
fmvis f4, 0x8000 # writes -0.0 to f4

fmvis f4, 0x3F80 # writes +1.0 to f4

fmvis f4, OxBFCO # writes -1.5 to f4

fmvis f4, Ox7FCO # writes +qNaN to f4

fmvis f4, 0x7F80 # writes +Infinity to f4
fmvis f4, OxFF80 # writes -Infinity to f4
fmvis f4, Ox3FFF # writes +1.9921875 to f4

Floating-Point Immediate Second-Half Move

fishmv FRS, D

DX-Form:
0-5 6-10 11-15 16-25 26-30 31 Form
Major FRS dl do X0 d2 DX-Form
Pseudocode:
n <- (FRS) read FRS

fp32 <- SINGLE(n)
fp32[16:31] <- d0 || d1 || d2
FRS <- DOUBLE(£fp32)

convert to FP32
replace LSB half
convert back to FP64

H H H

Special registers altered:
None

An additional 16-bits of immediate is inserted into FRS to extend its accuracy to a full FP32, which is then stored in the usual
FP64 Format within the FPR.

This instruction performs a Read-Modify-Write. FRS is read, the additional 16 bit immediate inserted, and the result
also written to FRS. This is strategically similar to how 1% combined with oris is used to construct 32-bit Integers. fishmv may
be macro-op-fused with fmvis

Programmer’s note: If a prior fmvis instruction had been used to set the upper 16-bits from an FP32 value, fishmv may be used
to set the lower 16-bits. Example:

these two combined instructions write 0x3f808000

into f4 as an FP32 to be converted to an FP64.

actual contents in f4 after conversion: 0x3f£f0_1000_0000_0000
first the upper bits, happens to be +1.0

fmvis f4, Ox3F80 # writes +1.0 to f4

now write the lower 16 bits of an FP32

fishmv f4, 0x8000 # writes +1.00390625 to f4

[['tag opf_rfc]]

	RFC ls002 Floating-Point Load-Immediate
	Appendices
	Floating-Point Move Immediate
	Floating-Point Immediate Second-Half Move

