RFC 1s004 Shift-And-Add </>

e Funded by NLnet under the Privacy and Enhanced Trust Programme, EU Horizon2020 Grant 825310, and NGIO Entrust
No 101069594

o https://libre-soc.org/openpower /sv /rfc/1s004/

 https://git.openpower.foundation /isa/PowerISA /issues/125

o feedback: https://bugs.libre-soc.org/show_bug.cgi?id=1091

Changes:
o initial shift-and-add https://bugs.libre-soc.org/show_ bug.cgi?id=968
o add saddw: https://bugs.libre-soc.org/show__bug.cgi?id=996
« consider LD/ST-Shifted https://bugs.libre-soc.org/show_ bug.cgi?id=1055
Severity: Major
Status: New
Date: 31 Oct 2022
Target: v3.2B
Source: v3.0B
Books and Section affected:

Book I Fixed-Point Shift Instructions 3.3.14.2
Appendix E Power ISA sorted by opcode

Appendix F Power ISA sorted by version

Appendix G Power ISA sorted by Compliancy Subset
Appendix H Power ISA sorted by mnemonic

Summary

Instructions added

sadd - Shift and Add

saddw - Shift and Add Signed Word

sadduw - Shift and Add Unsigned Word

Also under consideration LD/ST-Indexed-Shifted

Submitter: Luke Leighton (Libre-SOC)
Requester: Libre-SOC
Impact on processor:
Addition of three new GPR-based instructions
Impact on software:

Requires support for new instructions in assembler, debuggers,
and related tools.

Keywords:
GPR, Bit-manipulation, Shift, Arithmetic, Array Indexing
Motivation

Power ISA is missing LD/ST Indexed with shift, which is present in both ARM and x86. Adding more LD/ST is thirty eight
instructions, a compromise is to add shift-and-add. Replaces a pair of explicit instructions in hot-loops.

Notes and Observations:

sadd and sadduw operate on unsigned integers.

sadduw is intended for performing address offsets, as the second operand is constrained to lower 32-bits and zero-extended.

All three are 2-in 1-out instructions.

shift-add operations are present in both x86 and aarch64, since they are useful for both general arithmetic and for computing

addresses even when not immediately followed with a load/store.

5. saddw is often more useful than sadduw because C/C++ programmers like to use int for array indexing. for additional
details see https://bugs.libre-soc.org/show bug.cgi?id=996.

6. Even Motorola 68000 has LD/ST-Indexed-Shifted https://tack.sourceforge.net/olddocs/m68020.html#2.2.2.%20Extra%20
MC68020%20addressing%20modes

7. should average-shift-add also be included? what about CA-in / CA-out?

Ll o

Changes
Add the following entries to:

o the Appendices of Book I
o Instructions of Book I added to Section 3.3.14.2

https://libre-soc.org/openpower/sv/rfc/ls004/
https://git.openpower.foundation/isa/PowerISA/issues/125
https://bugs.libre-soc.org/show_bug.cgi?id=1091
https://bugs.libre-soc.org/show_bug.cgi?id=968
https://bugs.libre-soc.org/show_bug.cgi?id=996
https://bugs.libre-soc.org/show_bug.cgi?id=1055
https://bugs.libre-soc.org/show_bug.cgi?id=996
https://tack.sourceforge.net/olddocs/m68020.html#2.2.2.%20Extra%20MC68020%20addressing%20modes
https://tack.sourceforge.net/olddocs/m68020.html#2.2.2.%20Extra%20MC68020%20addressing%20modes

Table of LD /ST-Indexed-Shift </>

The following demonstrates the alternative instructions that could be considered to be added. They are all 9-bit XO:

o 12 Load Indexed Shifted (with Update)

¢ 3 Load Indexed Shifted Byte-reverse

o 8 Store Indexed Shifted (with Update)

e 3 Store Indexed Shifted Byte-reverse

o 6 Floating-Point Load Indexed Shifted (with Update)

o 6 Floating-Point Store Indexed Shifted (with Update)

e 6 Load Indexed Shifted Update Post-Increment

e 4 Store Indexed Shifted Update Post-Increment

e 2 Floating-Point Load Indexed Shifted Update Post-Increment
e 2 Floating-Point Store Indexed Shifted Update Post-Increment

Total count: 51 new 9-bit XO instructions, for an approximate total XO cost of 3 bits within a single Primary Opcode. With the
savings that these instructions represent in hot-loops, as evidenced by their inclusion in top-end ISAs such as x86 and ARM, the
cost may be considered justifiable. However there is no point in placing the 38 Shifted-only group in EXT2xx, they need to be in
EXT0xx, because if added as 64-bit Encoding the benefit reduction in binary size is not achieved. Post-Increment-Shifted on the
other hand could reasonably be proposed in EXT2xx.

LD/ST-Shifted

0-5 6-10 11-15 16-20 21-22 23-31 Instruction

PO RT RA RB SH XO lbzsx RT,RA,RB,SH
PO RT RA RB SH XO lhzsx RT,RA,RB,SH
PO RT RA RB SH XO lhasx RT,RA,RB,SH
PO RT RA RB SH XO lwzsx RT,RARB,SH
PO RT RA RB SH XO lwasx RT,RA,RB,SH
PO RT RA RB SH XO Ildsx RT,RA,RB,SH

PO RT RA RB SH XO Ihbrsx RT,RA,RB,SH
PO RT RA RB SH XO lwbrsx RT,RA,RB,SH
PO RT RA RB SH XO Ildbrsx RT,RA,RB,SH
PO RS RA RB SH XO stbsx RS,RA,RB,SH
PO RS RA RB SH XO sthsx RS,RA,RB,SH
PO RS RA RB SH XO stwsx RS,RA,RB,SH
PO RS RA RB SH XO stdsx RS,RA,RB,SH
PO RS RA RB SH XO sthbrsx RS,RA,RB,SH
PO RS RA RB SH XO stwbrsx RS,RA,RB,SH
PO RS RA RB SH XO stdbrsx RS,RA,RB,SH
PO FRT RA RB SH XO lfsxs FRT,RA,RB,SH
PO FRT RA RB SH XO lfdxs FRT,RA,RB,SH
PO FRT RA RB SH XO lfiwaxs FRT,RA,RB,SH
PO FRT RA RB SH XO lfiwzxs FRT,RA,RB,SH
PO FRS RA RB SH XO stfsxs FRS,RA,RB,SH
PO FRS RA RB SH XO stfdxs FRS,RA,RB,SH
PO FRS RA RB SH XO stfiwxs FRS,RA,RB,SH

LD/ST-Shifted-Update

0-5 6-10 11-15 16-20 21-22 23-31 Instruction

PO RT RA RB SH XO lbzusx RT,RA,RB,SH
PO RT RA RB SH XO lhzusx RT,RA,RB,SH
PO RT RA RB SH XO lhausx RT,RA,RB,SH
PO RT RA RB SH XO lwzusx RT,RA,RB,SH
PO RT RA RB SH XO Ilwausx RT,RA.RB,SH
PO RT RA RB SH XO Ildusx RT,RA,RB,SH
PO RS RA RB SH XO stbusx RS,RA,RB,SH
PO RS RA RB SH XO sthusx RS,RA,RB,SH
PO RS RA RB SH XO stwusx RS,RA,RB,SH
PO RS RA RB SH XO stdusx RS,RA,RB,SH
PO FRT RA RB SH XO lfsuxs FRT,RA,RB,SH
PO FRT RA RB SH XO lfduxs FRT,RA,RB,SH
PO FRS RA RB SH XO stfsuxs FRS,RARB,SH
PO FRS RA RB SH XO stfduxs FRS,RA,RB,SH

Post-Increment-Update LD /ST-Shifted

0-5 6-10 11-15 16-20 21-22 23-31 Instruction

PO RT RA RB SH XO Ibzuspx RT,RA,RB,SH
PO RT RA RB SH XO lhzuspx RT,RA,RB,SH

0-5 6-10 11-15 16-20 21-22 23-31 Instruction

PO RT RA RB SH X0 lhauspx RT,RA,RB,SH
PO RT RA RB SH X0 lwzuspx RT,RA,RB,SH
PO RT RA RB SH X0 lwauspx RT,RA ,RB,SH
PO RS RA RB SH X0 stbuspx RS,RA,RB,SH
PO RS RA RB SH X0 sthuspx RS,RA,RB,SH
PO RS RA RB SH X0 stwuspx RS,RA,RB,SH
PO RS RA RB SH X0 stduspx RS,RA,RB,SH
PO RT RA RB SH X0 lduspx RT,RA RB,SH
PO FRT RA RB SH X0 Ifdupxs FRT,RA ,RB,SH
PO FRT RA RB SH X0 Ifsupxs FRT,RA,RB,SH
PO FRS RA RB SH X0 stfdupxs FRS,RA ,RB,SH
PO FRS RA RB SH X0 stfsupxs FRS,RA ,RB,SH

Shift-and-Add </>

sadd RT, RA, RB, SH

0-5 6-10 11-15 16-20 21-22 23-30 31 Form
PO RT RA RB SH XO Rec Z23-Form

Pseudocode:
shift <- SH + 1 # Shift is between 1-4
sum[0:63] <- ((RB) << shift) + (RA) # Shift RB, add RA
RT <- sum # Result stored in RT

When SH is zero, the contents of register RB are multiplied by 2, added to the contents of register RA, and the result stored in
RT.

SH is a 2-bit bit-field, and allows multiplication of RB by 2, 4, 8, 16.
Operands RA and RB, and the result RT are all 64-bit, unsigned integers.
NEED EXAMPLES (not sure how to embed SH)!!! Examples:

adds r1 to (r2%8)
sadd r4, ri1, r2, 3

Shift-and-Add Signed Word < />

saddw RT, RA, RB, SH

0-5 6-10 11-15 16-20 21-22 23-30 31 Form
PO RT RA RB SH X0 Rec Z23-Form

Pseudocode:
shift <- SH + 1 # Shift is between 1-4
n <- EXTS64((RB) [32:63]) # Only use lower 32-bits of RB
sum[0:63] <- (n << shift) + (RA) # Shift n, add RA
RT <- sum # Result stored in RT

When SH is zero, the lower word contents of register RB are multiplied by 2, added to the contents of register RA, and the result
stored in RT.

SH is a 2-bit bit-field, and allows multiplication of RB by 2, 4, 8, 16.
Operands RA and RB, and the result RT are all 64-bit, signed integers.

Programmer’s Note: The advantage of this instruction is doing address offsets. RA is the base 64-bit address. RB is the offset
into data structure limited to 32-bit.

Examples:

r4d = r1 + (r2*16) </>
saddw r4, r1, r2, 3

Shift-and-Add Unsigned Word </>

sadduw RT, RA, RB, SH

0-5 6-10 11-15 16-20 21-22 23-30 31 Form
PO RT RA RB SH XO Rec Z23-Form

Pseudocode:
shift <- SH + 1 # Shift is between 1-4
n <- (BRB) [32:63] # Only use lower 32-bits of RB
sum[0:63] <- (n << shift) + (RA) # Shift n, add RA
RT <- sum # Result stored in RT

When SH is zero, the lower word contents of register RB are multiplied by 2, added to the contents of register RA, and the result
stored in RT.

SH is a 2-bit bit-field, and allows multiplication of RB by 2, 4, 8, 16.
Operands RA and RB, and the result RT are all 64-bit, unsigned integers.

Programmer’s Note: The advantage of this instruction is doing address offsets. RA is the base 64-bit address. RB is the offset
into data structure limited to 32-bit.

Examples:

 </>
sadduw r4, r1, r2, 2

Instruction Formats </>

Add the following to Book I 1.6.1

723-Form:

| 0-5 | 6-10 | 11-15 16-20 | 21-22 23-30 | 31 | Form |
[—=————- | -————- [——————- [-—————- [-—————- [——————- Rl |
| PO | RT | RA | RB | SH | X0 | Rc | Z23-Form |

Instruction Fields </>

Add Z23 to the following Formats in Book I 1.6.2: RT RA RB X0 Rc
Add the following new fields:

SH (21:22)
Field used to specify a shift amount.
Formats: Z23

Appendices </>

Appendix E Power ISA sorted by opcode

Appendix F Power ISA sorted by version

Appendix G Power ISA sorted by Compliancy Subset
Appendix H Power ISA sorted by mnemonic

Form Book Page Version mnemonic Description

723 1 # 3.0B sadd Shift-and-Add
723 1 # 3.0B saddw Shift-and-Add Signed Word
723 I # 3.0B sadduw Shift-and-Add Unsigned Word

[['tag opf_rfc]]

	RFC ls004 Shift-And-Add </>
	Table of LD/ST-Indexed-Shift </>
	Shift-and-Add </>
	Shift-and-Add Signed Word </>
	Shift-and-Add Unsigned Word </>
	Instruction Formats </>
	Instruction Fields </>
	Appendices </>

