RFC 1s006 FPR <-> GPR Move/Conversion </>

* Funded by NLnet under the Privacy and Enhanced Trust Programme, EU Horizon2020 Grant 825310, and
NGIO Entrust No 101069594

https://libre-soc.org/openpower/sv/int fp mv/

https://libre-soc.org/openpower/sv/rfc/1s006.fpintmv/

https://bugs.libre-soc.org/show bug.cgi?id=1015
https://git.openpower.foundation/isa/PowerISA/issues/todo

Severity: Major

Status: New

Date: 09 Feb 2024 v2

Target: v3.2B

Source: v3.1B

Books and Section affected: UPDATE

Book I 4.6.5 Floating-Point Move Instructions

Book I 4.6.7.2 Floating-Point Convert To/From Integer Instructions
Appendix E Power ISA sorted by opcode

Appendix F Power ISA sorted by version

Appendix G Power ISA sorted by Compliancy Subset

Appendix H Power ISA sorted by mnemonic

Summary
Single-precision Instructions added:

* mffprs - Move From FPR Single
* mtfprs - Move To FPR Single
» ctfprs - Convert To FPR Single

Identical (except Double-precision) Instructions added:

mffpr - Move From FPR
mtfpr - Move To FPR
cffpr - Convert From FPR
ctfpr - Convert To FPR

Submitter: Luke Leighton (Libre-SOC)
Requester: Libre-SOC

Impact on processor:

* Addition of three new Single-Precision GPR-FPR-based instructions
* Addition of four new Double-Precision GPR-FPR-based instructions

Impact on software:
* Requires support for new instructions in assembler, debuggers, and related tools.
Keywords:
GPR, FPR, Move, Conversion, ECMAScript, Saturating
Motivation

CPUs without VSX/VMX lack a way to efficiently transfer data between FPRs and GPRs, they need to go through
memory, this proposal adds more efficient data transfer (both bitwise copy and Integer <-> FP conversion)
instructions that transfer directly between FPRs and GPRs without needing to go through memory.

IEEE 754 does not specify what results are obtained when converting a NaN or out-of-range floating-point
value to integer: consequently, different programming languages and ISAs have made different choices, mak-
ing binary portability very difficult. Below is an overview of the different variants, listing the languages and
hardware that implements each variant.

Notes and Observations:

* These instructions are present in many other ISAs.

» ECMAScript rounding as one instruction saves 32 scalar instructions including seven branch instructions.

* Both sets are orthogonal (no difference except being Single/Double). This allows IBM to follow the pre-
existing precedent of allocating separate Major Opcodes (PO) for Double-precision and Single-precision
respectively.

Changes
Add the following entries to:

* Book I 4.6.5 Floating-Point Move Instructions
* Book I4.6.7.2 Floating-Point Convert To/From Integer Instructions
* BookI1.6.1 and 1.6.2

https://libre-soc.org/openpower/sv/int_fp_mv/
https://libre-soc.org/openpower/sv/rfc/ls006.fpintmv/
https://bugs.libre-soc.org/show_bug.cgi?id=1015
https://git.openpower.foundation/isa/PowerISA/issues/todo

Floating-point to Integer Conversion Overview </>

IEEE 754 does not specify what results are obtained when converting a NaN or out-of-range floating-point
value to integer, so different programming languages and ISAs have made different choices. The different
conversion modes supported by the cffpr instruction are as follows:

* P-Type:
Used by most other PowerISA instructions, as well as commonly used floating-point to integer conversions
on x86.

* S-Type:
Used for WebAssembly’s t runc_sat_u1 and trunc_sat s?instructions, as well as several notable program-
ming languages:

Java’s conversion from float/double to long/int>

Rust’s as operator®

LLVM’s llvm. fptosi.sat® and llvm. fptoui.sat® intrinsics

SPIR-V’s OpenCL dialect’s OpConvertFToU’ and OpConvertFToS® instructions when decorated with the
SaturatedConversion® decorator.

* E-Type:

Used for ECMAScript’s ToInt32 abstract operation'®. Also implemented in ARMv8.3A as the FICVTZS
instruction!!.

Floating-point to Integer Conversion Semantics Summary </>

Let round be the result of bfp ROUND TO INTEGER(rmode, input). Let w be the number of bits in the result’s
type. The result of Floating-point to Integer conversion is as follows:

+---m-- +---m- - R i L +
| Type| Result | Category of rounding |
[| Sign Fom e R R R R Fomm o - - +
| | | NaN | +Inf | -Inf | > Max | < Min | Else |
[| | [| | Possible | Possible] |
[| [[| | Result | Result | |
e R R LR R o e oo oo +
| P |Unsigned| 0O | 27w - 1 | O | 2%w - 1 | O | round |
| Fommm e s oo Fomm e R R Fomm o - +
[| Signed | -27(w-1) | 2%(w-1)-1 | -2"(w-1) | 2"(w-1)-1 | -2"(w-1)| round |
R s R R Fommm - - Fomm e Fomm o - +--mm - +
| S |Unsigned| © | 27w - 1 | © | 27w - 1 | © | round |
| Femmmmm o Fommm o Fommm e Fommmm oo R Fommmm o R +
| | Signed | © | 27 (w-1)-1 | -2"(w-1) | 2”(w-1)-1 | -2"(w-1)]| round |
s R R Fommm e a - Fommm e Fomm - - +--mm - +
| E | Either | © | round & (2”w - 1) |
R s R R T +

IWASM’s trunc_sat_u: https://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-u

2WASM'’s trunc_sat_s: https://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-s

37ava float/double to long/int conversion: https://docs.oracle.com/javase/specs/jls/se16/html/jls-5.html#jls-5.1.3

4Rust’s as operator: https://doc.rust-lang.org/1.70.0/reference/expressions/operator-expr.html#numeric-cast

SLIVM’s 1lvm. fptosi.sat intrinsic: https://llvm.org/docs/LangRef.html#1lvm-fptosi-sat-intrinsic

SLILVM’s 1lvm. fptoui.sat intrinsic: https://llvm.org/docs/LangRef. html#1lvm-fptoui-sat-intrinsic

7SPIR-V’s OpConvertFToU instruction: https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToU
8SPIR-V’s OpConvertFToS instruction: https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToS
9SPIR-V’s SaturatedConversion decorator:

https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html# a id decoration a decoration

10ECMAScript’s ToInt32 abstract operation: https://262.ecma-international.org/14.0/#sec-toint32
11 ARM’s FICVTZS instruction: https://developer.arm.com/documentation/dui0801/g/hko1477562192868

https://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-u
https://webassembly.github.io/spec/core/exec/numerics.html#op-trunc-sat-s
https://docs.oracle.com/javase/specs/jls/se16/html/jls-5.html#jls-5.1.3
https://doc.rust-lang.org/1.70.0/reference/expressions/operator-expr.html#numeric-cast
https://llvm.org/docs/LangRef.html#llvm-fptosi-sat-intrinsic
https://llvm.org/docs/LangRef.html#llvm-fptoui-sat-intrinsic
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToU
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpConvertFToS
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#_a_id_decoration_a_decoration
https://262.ecma-international.org/14.0/#sec-toint32
https://developer.arm.com/documentation/dui0801/g/hko1477562192868

Immediate Tables </>

Tables that are used by mffpr[s][.]/mtfprisl/cffprlol[.]l/ctfpris]l.]:

IT - Integer Type </>

IT Integer Type Assembly Alias Mnemonic
0 Signed 32-bit <op>w

1 Unsigned 32-bit <op>uw

2 Signed 64-bit <op>d

3 Unsigned 64-bit <op>ud

CVM - Float to Integer Conversion Mode </>

CVM rounding mode Semantics

000 from FPSCR P-Type
001 Truncate P-Type
010 from FPSCR S-Type
011 Truncate S-Type
100 from FPSCR E-Type
101 Truncate E-Type
rest - invalid

Move To/From Floating-Point Register Instructions </>

These instructions perform a copy from one register file to another, as if by using a GPR/FPR store, followed
by a FPR/GPR load.

Move From Floating-Point Register </>

mffpr RT, FRB
mffpr. RT, FRB

0-5 6-10 11-15 16-20 21-30 31 Form
PO RT // FRB X0 Rc X-Form

RT <- (FRB)
The contents of FPR[FRB] are placed into GPR[RT].
Special Registers altered:
CRO (if Rc=1)
Architecture Note:
mffpr is equivalent to the combination of stfd followed by 1d.
Architecture Note:

mffpris a separate instruction from mfvsrd because mfvsrd requires VSX which may not be available on simpler
implementations. Additionally, SVP64 may treat VSX instructions differently than SFFS instructions in a future
version of the architecture.

Move From Floating-Point Register Single </>

mffprs RT, FRB
mffprs. RT, FRB

0-5 6-10 11-15 16-20 21-30 31 Form
PO RT // FRB X0 Rc X-Form

RT <- [0] * 32 || SINGLE((FRB))

The contents of FPR[FRB] are converted to BFP32 by using SINGLE, then zero-extended to 64-bits, and the result
stored in GPR[RT].

Special Registers altered:
CRO (if Rc=1)
Architecture Note:

mffprs is equivalent to the combination of stfs followed by lwz.

Move To Floating-Point Register </>
mtfpr FRT, RB

0-5 6-10 11-15 16-20 21-30 31 Form
PO FRT // RB XO // X-Form

FRT <- (RB)
The contents of GPR[RB] are placed into FPR[FRT].
Special Registers altered:
None
Architecture Note:
mtfpr is equivalent to the combination of std followed by 1fd.
Architecture Note:

mtfpris a separate instruction from mtvsrd because mtvsrd requires VSX which may not be available on simpler
implementations. Additionally, SVP64 may treat VSX instructions differently than SFFS instructions in a future
version of the architecture.

Move To Floating-Point Register Single </>
mtfprs FRT, RB

0-5 6-10 11-15 16-20 21-30 31 Form
PO FRT // RB XO // X-Form

FRT <- DOUBLE((RB)[32:63])

The contents of bits 32:63 of GPR[RB] are converted to BFP64 by using DOUBLE, then the result is stored in
GPR[RT].

Special Registers altered:
None
Architecture Note:

mtfprs is equivalent to the combination of stw followed by 1fs.

Conversion To/From Floating-Point Register Instructions </>

Convert To Floating-Point Register </>

ctfpr FRT, RB, IT
ctfpr. FRT, RB, IT

0-5 6-10 11-12 13-15 16-20 21-30 31 Form
PO FRT IT // RB XO Rc X-Form

if IT[O] = O then # 32-bit int -> 64-bit float
rounding never necessary, so don't touch FPSCR
based off xvcvsxwdp
if IT = 0 then # Signed 32-bit
src <- bfp CONVERT FROM SI32((RB)[32:63])
else # IT =1 -- Unsigned 32-bit
src <- bfp CONVERT FROM UI32((RB)[32:63])
FRT <- bfp64 CONVERT FROM BFP(src)
else
rounding may be necessary. based off xscvuxdsp
reset xflags()
switch(IT)
case(0): # Signed 32-bit
src <- bfp CONVERT FROM SI32((RB)[32:63])
case(l): # Unsigned 32-bit
src <- bfp CONVERT FROM UI32((RB)[32:63])
case(2): # Signed 64-bit
src <- bfp CONVERT FROM SI64((RB))
default: # Unsigned 64-bit
src <- bfp CONVERT FROM UI64((RB))
rnd <- bfp ROUND TO BFP64(0b0, FPSCR.RN, src)
result <- bfp64 CONVERT FROM BFP(rnd)
cls <- fprf CLASS BFP64(result)

if xx_flag = 1 then SetFX(FPSCR.XX)

FRT <- result
FPSCR.FPRF <- cls
FPSCR.FR <- inc flag
FPSCR.FI <- xx flag

Convert from a unsigned/signed 32/64-bit integer in RB to a 64-bit float in FRT.

If converting from a unsigned/signed 32-bit integer to a 64-bit float, rounding is never necessary, so FPSCR is
unmodified and exceptions are never raised. Otherwise, FPSCR is modified and exceptions are raised as usual.

Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point operations.
Special Registers altered:

CR1 (if Rc=1)
FPRF FR FI FX XX (if IT[0]=1)

Assembly Aliases </>

Assembly Alias Full Instruction

ctfprw FRT, RB ctfpr FRT, RB, 0
ctfprw. FRT, RB ctfpr. FRT, RB, 0
ctfpruw FRT, RB ctfpr FRT, RB, 1
ctfpruw. FRT, RB ctfpr. FRT, RB, 1
ctfprd FRT, RB ctfpr FRT, RB, 2
ctfprd. FRT, RB ctfpr. FRT, RB, 2
ctfprud FRT, RB ctfpr FRT, RB, 3
ctfprud. FRT, RB ctfpr. FRT, RB, 3

Convert To Floating-Point Register Single </>

ctfprs FRT, RB, IT
ctfprs. FRT, RB, IT

0-5 6-10 11-12 13-15 16-20 21-30 31 Form
PO FRT 1IT // RB X0 Rc X-Form

rounding may be necessary. based off xscvuxdsp
reset xflags()
switch(IT)
case(0): # Signed 32-bit
src <- bfp CONVERT FROM SI32((RB)[32:63])
case(l): # Unsigned 32-bit
src <- bfp CONVERT FROM UI32((RB)[32:63])
case(2): # Signed 64-bit
src <- bfp CONVERT FROM SI64((RB))
default: # Unsigned 64-bit
src <- bfp CONVERT FROM UI64((RB))
rnd <- bfp ROUND TO BFP32(FPSCR.RN, src)
result32 <- bfp32 CONVERT FROM BFP(rnd)
cls <- fprf CLASS BFP32(result32)
result <- DOUBLE(result32)

if xx_flag = 1 then SetFX(FPSCR.XX)

FRT <- result
FPSCR.FPRF <- cls
FPSCR.FR <- inc flag
FPSCR.FI <- xx_flag

Convert from a unsigned/signed 32/64-bit integer in RB to a 32-bit float in FRT, following the usual 32-bit float
in 64-bit float format. FPSCR is modified and exceptions are raised as usual.

Rc=1 tests FRT and sets CR1, exactly like all other Scalar Floating-Point operations.
Special Registers altered:

CR1 (if Rc=1)
FPRF FR FI FX XX

Assembly Aliases </>

Assembly Alias Full Instruction

ctfprws FRT, RB ctfpr FRT, RB, 0
ctfprws. FRT, RB ctfpr. FRT, RB, 0
ctfpruws FRT, RB ctfpr FRT, RB, 1
ctfpruws. FRT, RB ctfpr. FRT, RB, 1
ctfprds FRT, RB ctfpr FRT, RB, 2
ctfprds. FRT, RB ctfpr. FRT, RB, 2
ctfpruds FRT, RB ctfpr FRT, RB, 3
ctfpruds. FRT, RB ctfpr. FRT, RB, 3

Convert From Floating-Point Register </>

cffpr RT, FRB, CVM, IT

cffpr. RT, FRB, CVM, IT
cffpro RT, FRB, CVM, IT
cffpro. RT, FRB, CVM, IT

0-5 6-10 11-12 13-15 16-20 21 22-30 31 Form
PO RT IT CVM FRB OE XO Rc XO-Form

based on xscvdpuxws
reset xflags()
src <- bfp CONVERT FROM BFP64((FRB))

switch(IT)

case(0): # Signed 32-bit
range_min <- bfp CONVERT FROM SI32(0x8000 0000)
range max <- bfp CONVERT FROM SI32(0x7FFF FFFF)
js_mask <- Ox0000 0000 FFFF_FFFF

case(l): # Unsigned 32-bit
range_min <- bfp CONVERT FROM UI32(0)
range _max <- bfp CONVERT FROM UI32(OxFFFF_FFFF)
js_mask <- Ox0000 0000 FFFF_FFFF

case(2): # Signed 64-bit
range_min <- bfp CONVERT FROM SI64(-0x8000 0000 0000 0000)
range_max <- bfp CONVERT FROM SI64(0x7FFF FFFF_FFFF_FFFF)
js mask <- OxFFFF_FFFF_FFFF_FFFF

default: # Unsigned 64-bit
range min <- bfp CONVERT FROM UI64(0)
range_max <- bfp CONVERT FROM UI64(0xFFFF_FFFF_FFFF_FFFF)
js_mask <- OxFFFF_FFFF_FFFF_FFFF

if (CVYM[2] = 1) | (FPSCR.RN = 0b01) then

rnd <- bfp ROUND TO INTEGER TRUNC(src)
else if FPSCR.RN = 0b00O then

rnd <- bfp ROUND TO INTEGER NEAR EVEN(src)
else if FPSCR.RN = 0bl0 then

rnd <- bfp ROUND TO INTEGER CEIL(src)
else if FPSCR.RN = 0bll then

rnd <- bfp ROUND TO INTEGER FLOOR(src)

switch(CVM)
case(0, 1): # P-Type
if IsNaN(rnd) then
result <- si64 CONVERT_FROM BFP(range min)
else if bfp COMPARE GT(rnd, range max) then
result <- ui64 CONVERT_FROM BFP(range max)
else if bfp COMPARE LT(rnd, range min) then
result <- si64 CONVERT FROM BFP(range min)
else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64 CONVERT FROM BFP(rnd)
else # Signed 32/64-bit
result <- si64 CONVERT_FROM BFP(rnd)
case(2, 3): # S-Type
if IsNaN(rnd) then
result <- [0] * 64
else if bfp COMPARE GT(rnd, range max) then
result <- ui64 CONVERT_FROM BFP(range max)
else if bfp COMPARE LT(rnd, range min) then
result <- si64 CONVERT FROM BFP(range min)
else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64 CONVERT_FROM BFP(rnd)
else # Signed 32/64-bit
result <- si64 CONVERT FROM BFP(rnd)
default: # E-Type
CVM = 6, 7 are illegal instructions
using a 128-bit intermediate works here because the largest type
this instruction can convert from has 53 significand bits, and
the largest type this instruction can convert to has 64 bits,
and the sum of those is strictly less than the 128 bits of the
intermediate result.
limit <- bfp CONVERT FROM UI128([1] * 128)
if IsInf(rnd) | IsNaN(rnd) then
result <- [0] * 64
else if bfp COMPARE_GT(bfp ABSOLUTE(rnd), limit) then
result <- [0] * 64
else

H R HH R H

resultl28 <- sil128 CONVERT_FROM BFP(rnd)
result <- resultl28[64:127] & js mask

switch(IT)

case(0): # Signed 32-bit

result <- EXTS64(result[32:63])

result bfp <- bfp CONVERT FROM SI32(result[32:63])
case(l): # Unsigned 32-bit

result <- EXTZ64(result[32:63])

result bfp <- bfp CONVERT FROM UI32(result[32:63])
case(2): # Signed 64-bit

result bfp <- bfp CONVERT FROM SI64(result)
default: # Unsigned 64-bit

result bfp <- bfp CONVERT FROM UI64(result)

overflow <- @ # signals SO only when OE =1
if IsNaN(src) | —-bfp COMPARE_EQ(rnd, result bfp) then
overflow <- 1 # signals SO only when OE =1
vxcvi flag <- 1
xx_flag <- 0
inc flag <- 0
else
xx_flag <- -bfp COMPARE EQ(src, result bfp)
inc_flag <- bfp COMPARE GT(bfp ABSOLUTE(result bfp), bfp ABSOLUTE(src))

if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
if vxcvi flag = 1 then SetFX(FPSCR.VXCVI)
if xx_flag = 1 then SetFX(FPSCR.XX)

vx_flag <- vxsnan flag | vxcvi flag
vex flag <- FPSCR.VE & vx_ flag
if vex flag = 0 then
RT <- result
FPSCR.FPRF <- undefined
FPSCR.FR <- inc_ flag
FPSCR.FI <- xx flag
else
FPSCR.FR <- 0
FPSCR.FI <- 0

Convert from 64-bit float in FRB to a unsigned/signed 32/64-bit integer in RT, with the conversion over-
flow/rounding semantics following the chosen CVM value. FPSCR is modified and exceptions are raised as usual.

This instruction has an Rc=1 mode which sets CRO in the normal way for any instructions producing a GPR
result. Additionally, when OE=1, if the numerical value of the FP number is not 100% accurately preserved
(due to truncation or saturation and including when the FP number was NaN) then this is considered to be an
Integer Overflow condition, and CR0.SO, XER.SO and XER.OV are all set as normal for any GPR instructions
that overflow. When RT is not written (vex flag = 1), all CRO bits except SO are undefined.

Special Registers altered:
CRO

(if Rc=1)

XER SO, 0OV, 0V32 (if OE=1)
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCV

Assembly Aliases </>

Assembly Alias

Full Instruction

cffprw RT, FRB, CVM
cffprw. RT, FRB, CVM
cffprwo RT, FRB, CVM
cffprwo. RT, FRB, CVM
cffpruw RT, FRB, CVM
cffpruw. RT, FRB, CVM
cffpruwo RT, FRB, CVM
cffpruwo. RT, FRB, CVM
cffprd RT, FRB, CVM
cffprd. RT, FRB, CVM
cffprdo RT, FRB, CVM
cffprdo. RT, FRB, CVM
cffprud RT, FRB, CVM
cffprud. RT, FRB, CVM
cffprudo RT, FRB, CVM
cffprudo. RT, FRB, CVM

cffpr RT, FRB, CVM, 0
cffpr. RT, FRB, CVM, 0O
cffpro RT, FRB, CVM, ©
cffpro. RT, FRB, CVM, 0
cffpr RT, FRB, CVM, 1
cffpr. RT, FRB, CVM, 1
cffpro RT, FRB, CVM, 1
cffpro. RT, FRB, CVM, 1
cffpr RT, FRB, CVM, 2
cffpr. RT, FRB, CVM, 2
cffpro RT, FRB, CVM, 2
cffpro. RT, FRB, CVM, 2
cffpr RT, FRB, CVM, 3
cffpr. RT, FRB, CVM, 3
cffpro RT, FRB, CVM, 3
cffpro. RT, FRB, CVM, 3

Instruction Formats </>

Add the following entries to Book I 1.6.1.19 XO-FORM:

10 6 |11 |13 |16 |21 |22 |31 |
| PO | RT | IT | CVM | FRB | OE | X0 | Rc |

Add the following entries to Book I 1.6.1.15 X-FORM:

06	6	11	13	16	21	31
PO	FRT	IT	//	RB	X0	Rc
PO	FRT	//	RB	X0	Rc	
PO	RT	//	FRB	X0	Rc	

Instruction Fields </>

Add XO to FRB’s Formats list in Book I 1.6.2 Word Instruction Fields.
Add XO to FRT’s Formats list in Book I 1.6.2 Word Instruction Fields.
Add new fields:
IT (11:12)
Field used to specify integer type for FPR <-> GPR conversions.

Formats: X, XO

CVM (13:15)
Field used to specify conversion mode for
integer -> floating-point conversion.

Formats: XO

10

Appendices </>

Appendix E Power ISA
Appendix F Power ISA
Appendix G Power ISA
Appendix H Power ISA

[['tag opf rfc]]

sorted by opcode

sorted by version

sorted by Compliancy Subset
sorted by mnemonic

Form Book Page Version mnemonic

Description

VA I # 3.2B todo

11

	RFC ls006 FPR <-> GPR Move/Conversion </>
	Floating-point to Integer Conversion Overview </>
	Floating-point to Integer Conversion Semantics Summary </>

	Immediate Tables </>
	IT – Integer Type </>
	CVM – Float to Integer Conversion Mode </>

	Move To/From Floating-Point Register Instructions </>
	Move From Floating-Point Register </>
	Move From Floating-Point Register Single </>
	Move To Floating-Point Register </>
	Move To Floating-Point Register Single </>

	Conversion To/From Floating-Point Register Instructions </>
	Convert To Floating-Point Register </>
	Assembly Aliases </>

	Convert To Floating-Point Register Single </>
	Assembly Aliases </>

	Convert From Floating-Point Register </>
	Assembly Aliases </>

	Instruction Formats </>
	Instruction Fields </>
	Appendices </>

